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Technical Progress
This report summarizes our progress for the period November 1988 - March 1989.

1 Parallel Processor Architecture

1.1 Basic Architecture Studies
In the parallel architecture area, one of our main focuses has been on obtaining multiprocessor
memory reference and synchronization traces [Davis 88] from several real parallel applications,
and using them to evaluate implications for parallel architectures. Our original studies were
done using traces obtained from a VAX-8350 (using modified microcode). A major limitation of
the microcode-based scheme was that it was not possible to get traces for more than 4
processors. Subsequently, we developed and used a scheme based on the VAX T-bit. This
enabled us to use an arbitrary number of processes but it was too slow. It took approximately a
week to get a reasonable length 32 process memory reference trace. We have developed a new
and powerful tool called Tango to help with this task.

Tango is a software tracing and simulation system that provides data to aid in evaluating parallel
programs and multiprocessor systems. The system provides a simulated multiprocessor
environment by multiplexing application processes onto a single processor. Tango allows the
user to trace the shared memory and synchronization behavior of parallel programs. The system
is efficient, and can be used with a wide range of machine and programming models. Accurate
tracing is difficult since parallel programs are typically non-deterministic: the execution path
through the program depends on the real time behavior of the hardware system. Tango offers
accurate tracing by allowing the user to optionally integrate his shared memory and
synchronization timing simulations into the tracing environment.

The Tango system gains efficiency by focusing on the application behavior specifically related to
our multiprocessor behavior, and also by running compiled code, rather than emulated code. In
using Tango, the application source code is not modified; it is automatically augmented in the
compilation process to produce a compiled simulation. The compiled code includes the tracing
and simulation code needed for a particular set of studies-and is run directly on an available
uniprocessor-there is no time expensive instruction emulation, and the simulation system is
tailored to the events of interest. The Tango system currently runs on the MIPS M120 and on the
DECStation 3100. It is about 100-1000 times faster than our old T-bit based trace generator, and
thus qualitatively changes the kinds of studies that we can do. We have used this version to trace
the shared memory reference behavior of several of our parallel applications with up to 100
processors.

1.2 Scalable Shared Memory Multiprocessors
As stated in our previous report, we are actively pursuing the design of a large scale shared-
memory machine using the fastest available microprocessors. The main technique that we are
exploiting to achieve scalability is that of directory-based cache coherence. The basic principle
is that each rnemrnory line keeps track of processors that are caching it. Consequently, point to
point invalidation messages are sent only to those processors that are actually caching the data.
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This is in contrast to snoopy schemes where invalidation/update broadcasts are used to keep
caches consistent, thus consuming large amounts of bandwidth.

Several decisions have become more concrete since our last report and several new issues have
cropped up. We have decided to use the Silicon Graphics Iris-4D workstation as the individual
node of our multiprocessor. The Iris workstation is itself a multiprocessor consisting of 4
processors, with each processor having a 25MHz MIPS-R3000 as an integer unit and a MIPS-
R3010 floating point unit and a large 2-level cache. Thus, the individual node in our machine
will have about 80 MIPS of integer performance and about 16-20 MFLOPS of floating point
performance. The main reason for going with a commercial machine as the node of our
multiprocessor was to reduce the amount of hardware we needed to build at Stanford, thereby
reducing the time to completion of the machine. It was a complex trade-off, since we do lose
some design flexibility, but we felt it was worth it.

In the past six months we have been working on finalizing the directory-based cache coherence
protocol. We have moved away from the blocking protocol we had originally proposed to a
non-blocking protocol. In the non-blocking protocol, when a request for a location that is dirty
in a remote cache is received by a directory, the directory forwards that request to the remote
cluster rather than holding on to the request. We believe this protocol will significantly reduce
the buffering requirements and enhance the performance of the machine. We are currently doing
simulations to confirm this intuition.

We have also had to make decisions regarding the degree of shared-memory consistency that our
machine will have. We are moving away from the traditional notions of strong consistency and
weak consistency to a still weaker form of consistency. The key idea is that you have to wait for
the writes to complete only before a sychronization instruction that can release another
processor, and not before all synchronization instructions. We expect our protocol to offer higher
performance and simpler implementation. We have also been working on providing hardware
support for high contention synchronization operations like barriers. Detailed design of all
critical parts of the machine, with the SGI Iris-4D as the base, is now proceeding.

We are also continuing our studies about invalidation patterns in multiprocessors. Since our last
report, we have gathered additional information about the affect of varying the cache line size on
invalidation patterns. Our studies show that both line sizes that are too small and line sizes that
are too large can cause a higher number of invalidations. In addition, large line sizes can cause a
greater proportion of invalidations that must be sent to many processes, that is, there is a greater
proportion of references that invalidate a large number of caches. Compiler support can aid in
the selection and placement of data objects with respect to cache lines, and we are exploring such
possibilities.
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2 Parallel Software
One of our main goals in the parallel software area is to make sure that when the parallel
multiprocessor we are building comes up, there are significant applications and software that we
can run on it. To this end, we have been studying several compute-intensive applications and
working on parallelizing them. One of the new applications we have decided to parallelize is
SUPREM-IV, which is an integrated circuit fabrication simulator developed at Stanford by Mark
Law and Connor Rafferty. It is capable of modeling etching, depositing, diffusion, oxidation,
and implants. The application is very time consuming and can easily take several hours of time
on powerful workstatio,-s. The underlying model requires solving a set of equations on a two-
dimensional grid using the preconditioned conjugate-gradient method. We have an initial
implementation of the core of 3UPREM-IV now running on the Encore Multimax. We are
working on refining this implementation further, evaluating the scalabiity of the parallel
implementation, and studying how locality in the computation can be increased so that it works
well on our directory-based multiprocessor. We will be using TANGO and the architectural
simulator discussed in Section 1.1 to carry out this work. We are also looking into general
sparse matrix packages and studying how they can be implemented well on our directory-based
multiprocessor, or alternatively, what changes do we have to make to our architecture so this
large and important class of applications can be run well.

Another application area that we have been exploring is digital logic simulation. We are
exploring the use of the Chandy-Misra distributed simulation algorithm as applied to the domain
of logic simulation. We have now gathered up several realistic benchmark circuits, and have a
parallel implementation running. In [Soule 89a], we present data characterizing the intrinsic
parallelism in the benchmark circuits using the generic Chandy-Misra algorithm. Our results
show that the average number of logic elements available for concurrent execution ranges from
6.2 to 92 for the benchmark circuits, with an overall average of 50. Although this is twice as
much parallelism as that obtained by traditional event-driven algorithms, we feel it is still too
low. One major factor limiting concurrency is the large number of global synchronization points
--- "deadlocks" in the Chandy-Misra terminology --- that occur during execution. Towards the
goal of reducing the number of deadlocks, we present a classification of the types of deadlocks
that occur during digital logic simulation and some domain specific methods for reducing them.
Since the last report, we have implemented most of the proposed methods for reducing number
of deadlocks. The results are quite promising and are presented in [Soule 89b].

One of our new efforts in parallel software has been in the area of process control and scheduling
issues for shared-memory multiprocessors. The target environment we consider is a shared-
memory multiprocessor on which muiltiple users are developing and running their parallel
applications at the same time. In such an environment, where the machine load is continuously
varying, how should an application maximize its performance while being fair to other users of
the system? Our preliminary results are presented in [Tucker 89]. We first show that if the
number of processes belonging to a parallel application significantly exceeds the effective
number of physical processors it is getting, then its performance can be significantly degraded.
The degradaaon may be due to preemption of processes while they are within critical sections,
due to bad performance of barriers un 4er overload, and alsc duc to the overheads o; unnecessarv
context switching and processor cache corruption. We propose a way of controlling the active
number of processes associated with an application dynamically to ensure good performance. A
preliminary implementation of the proposed scheme is now running on the Encore Multimax and

November 1988 - March 1989 4



we show how it helps improve the performance of several applications. In some cases, the
improvement is more than a factor of two.
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3 Uniprocessor Architecture

3.1 Super Scalars
We have continued our work on investigating how much parallelism is available at the lowest
level -- in the base instruction stream of a processor. Our initial work in this area [Smith
89] showed, for the non-scientific applications we are interested in, it is possible to execute a
program in about one-half the number of cycles needed by a conventional RISC machine. This
work pointed out that the main problem was in the area of instruction fetching and not really
contention for functional units.

We have continued our work investigating both hardware/software tradeoffs in this area. Using
a trace-driven simulation system we have explored the performance of different hardware fetch
models as well as different methods of building the execution units. This data has provided a
much better feel for what really matters in this class of processor. The results indicate there are
four main features needed to achieve a speed-up of two. They are branch prediction, a four wide
instruction decoder, out-of-order execution, and register renaming. The first two are needed to
get enough instructions into the execution unit and the latter two are needed to remove
extraneous dependencies to allow greater parallelism.

The out-of-order issue allows an instruction B that logically follows A to be issued before A if it
does not have any data dependencies. Register renaming increases the available parallelism by
removing data dependencies that arise because of storage conflicts, caused by register reuse. To
implement this rearrangement of instructions, the hardware must solve two problems. First it
must be able to detect and track data dependencies, since this information now sets the actual
instruction sequence. Second, it must store the results from the instructions in such a way that
the true sequential state of the machine can be reconstructed in the case of an exceptional
condition occurs (like an interrupt). Neither of these tasks are simple. We are currently looking
at the hardware cost of these features, and methods of simplifying their implementation.

The complexity of the hardware needed to implement out-of-order issue has increased our
interest in a hardware/software solution, where some of the complexity of the hardware can be
migrated into the compiler/reorganizer system. This work is just beginning and will use the
previous work as the baseline for comparison.

3.2 High-Performance Cache Design
Traditionally, caches are evaluated on the basis of time-independent metrics, such as miss rates
and traffic ratios. However, computers as a whole are compared on the basis of overall
performance. When the basis of comparison of caches is changed miss ratios to execution time, a
whole new set of tradeoffs between the traditional organizational parameters - cache size,
associativity and block size - and the temporal parameters that the system designer has at his or
her disposal, in particular the cycle time, is exposed.

The primary consequences for cache design from this shift in perspective are: i) a clear optimum
cache size exists for each implementation environment (for most situations, that optimum lies
between 32KB and 128KB); ii) for cache sizes over 16KB, set associativity improves
performance only if the implementation of associativity degrades the cycle time by less than 4ns
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over that of a comparably sized direct-mapped cache; iii) the performance-optimal block size is
primarily dependent on the main memory characteristics, and for most systems that is either four
or eight words; and iv) most complicated fetch strategies do not improve performance very much
because they either don't have enough time to fetch something before it's needed, and when
there is time to fetch something useful, it is unclear what should be fetched. Fundamentally, this
is because cache misses are highly clustered in time. These results are presented in more detail
in [Przybylski 88a, Przybylski 88b].

The perspective of performance-directed cache design was also extended into th5 realm of multi-
level cache hierarchies. The presence of a second-level cache can decrease the optimum size and
cycle time of the first-level cache, and significantly improve performance beyond the best
attainable with a single level of caching. The optimal characteristics of the second level-cache
depend on the miss ratio of the first-level cache, but in general an optimal second level cache
will be significantly larger and more likely to be assocaitive than if it were alone in the system.
This is because the presence of the first-level cache reduces the number of accesses to the second
level without significantly reducing the number of misses in that cache. This shifts the tradeoff
away from short cycle times and towards low miss ratios [Przybylski 89]. Given a selection of
implementable caches of all sizes, dynamic programming can be used to select the overall best
memory hierarchy.
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4 Computer-Aided Design (CAD) Tools

4.1 Computer-Aided Synthesis
This work yielded a major breakthrough in optimal logic synthesis of digital synchronous
sequential circuits [De Micheli 89]. We have developed algorithms for minimizing i) the area of
synchronous combinational and/or sequential circuits under cycle time constraints and ii) the
cycle time under area constraints. Previous approaches attacked this problem by separating the
combinational logic from the registers and by applying circuit transformations to the
combinational component only. We have shown instead how to optimize concurrently the
circuit equations and the register position. This method is novel and achieves results that are at
least as good as those obtained by previous methods. A computer implementation of the
algorithms in program MINERVA has been accompolished and experimental results have
supported the theory.

4.2 Automatic Layout
The aim of the Locus project is to obtain high quality automatic placement of integrated circuits
by combining information from the routing into the placement optimization process. Because
routing is a time-consuming task, the first phase of this work was to produce a parallel global
router (for standard cell design technologies) that can perform the routing very quickly. The
parallel router, LocusRoute, is complete, having obtained significant speedups (10 to 13 times
faster) on a 16 processor Encore MULTIM4AX. We anticipate that it will achieve significant
speedup on more than 100 processors. This work has been published in [Rose 88a], which
focuses on the CAD algorithm, and in [Rose 88b] which discusses the parallel aspects.
Improvements to the basic algorithm and a more sophisticated multiprocessor scheduler have
recently been added. A revised publication that contains all aspects of the router and the new
improvements has been submitted [Rose 89a].

Work continues on the second phase, the Locus placement program. The input parsing, and
initial cost function calculation (including an entire routing of the starting placement) are
complete. An optimization strategy based on top-down N-way partitioning integrated with
complhte routing is now being devised. This involves the design of the cost function, the move
sets, the partitioning line sequence and the basic optimization process, which will be based on
Simulated Annealing. The temperature schedule will make use of the temperature measurement
scheme discussed below.

4.3 Temperature Measurement of Simulated Annealing Placements
One way to alleviate the high computational cost of Simulated Annealing is to replace part of it
with a faster heuristic, and then follow this with lower-temperature Simulated Annealing. A
crucial parameter in this kind of approach is the temperature at which to begin the Simulated
Annealing phase. This work addresses that problem, in the context of the automatic placement,
by developing a method of measuring the temperature of a given placement.

Recently we have formulated a more precise mathematical representation of the temperature
measurement method, based on the Markov Chain transition probabilities of the Simulated
Annealing process. We have learned that, while the method is theoretically fallible and may
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result in misleading temperatures, in practice for the placement problem it gives good answers.
An early version of this work was published in [Rose 88c]. The newer work is submitted for
publication in [Rose 89b].

We have recently learned that two others efforts are in the process of applying this research - in
research at Yale University and in commercial development at the CADENCE company in San
Jose, CA.

4.4 Ariel
Ariel, our system for analyzing voltage drops and current density in the power buses of VLSI
circuits, has been modified to solve networks of arbitrary topology [Stark 89]. It accomplishes
this by separating out simple subnetworks whose current-voltage characteristics cr'n be
calculated independently of the rest of the network, then solving the remainder using standard
sparse positive definite network analysis.

Ariel has also been extended to analyze ECL circuits. A static checker that analyzes an ECL
network, calculates the voltage ranges over which all nodes in the circuit can swing, and
determines where currents enter and leave the power network has been written. This current-
distribution information is fed into Ariel, which calculates the corresponding voltage drops and
current densities for the power buses.
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5 VLSI
We have been continuing our efforts to exploit the capabilities of integrated circuit technologies
for high speed systems. During this period we have continued our efforts in BiCMOS, testing
and programmable logic.

5.1 BICMOS
Our work in BiCMOS has continued in three fronts: fast sRAMs, innovative BiCMOS logic
circuits, and CAD tools for BiCMOS. In the area of fast sRAM we were very pleased to find out
that our new BiCMOS memory cell design, the CSEA cell, was used by a commercial company,
Aspen, in their 3ns 4K BiCMOS RAM [Cole 89]. Our work on a 64k BiCMOS RAM is
proceeding. We are working with Texas Instruments' 0.8 . BiCMOS technology and hope to
have a chip ready for fabrication by the end of the academic year.

The major work on BiCMOS circuits this past period was to design a test mask for the Stanford
BiCMOS process. This technology is interesting since it uses triple-diffused bipolar transistors,
rather than adding an epi layer. Not using epi is quite controversial, but we think the advantages
of smaller, low capacitance devices might overcome the disadvantages of the large collector
resistances. The devices seem especially promising as the minimal feature sizes approach 1 p.
The test mask contains a number of innovative circuits including sRAM cells, CAM cells, fast
PLAs, diode decoders, comparators, as well as a number of characterization devices. The first
lot of wafers is just finishing fabrication and we should have characterization data in a few
weeks.

The last major part of our BiCMOS effort is in creating CAD tools to support BiCMOS designs.
Although we have already modified the layout tools to handle the new technology, simulation
poses a much more difficult problem. To try to fill the current gap in simulation tools for
BiCMOS circuits we are working on Bisim, an Rsim-like simulator for Bipolar and BiCMOS
circuits. Like Rsim, Bisim is a switch level simulator, but unlike Rsim, Bisim understands that
signals are voltages rather than simple boolean values. This extra flexibility allows Bisim to
handle a wider class of circuits than Rsim can handle. In particular, it should be able to correctly
simulate a wide class of sense circuits -- circuits that often occur in BiCMOS. At this point, we
have developed piece-wise linear models for both bipolar and MOS devices. The models are
simple, yet preserve the important characteristics of the devices (for digital circuits). We are
now working on the evaluation routines and plan to have a version of the simulator running by
the end of the school year. Our goal is to use this tool to help debug the BiCMOS RAM that we
are designing.

5.2 Integrated Testers
During this period, we have continued to work on building a single chip tester. The chip, called
Testarossa, contains a dRAM for the test vector storage, a decompressor to increase the effective
vector size, and the pin electronics for 16 DUT pins. We have recently received the second run
of these chips. This version was fabricated in a 1.6.t CMOS technology. These chips were fully
functional, and preliminary testing indicates that we have enough fully functional parts to build a
256 pin, 25 MHz tester.

The vector RAM is a 1 -T dRAM to increase the available vector storage. Besides using a 1 -T
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cell, the design is quite conservative -- the cell capacitance is 0.1pf, and no lines in the array are
booted above the supply. It also seems to be resonably robust. The dRAM works properly with
a supply voltage of under 3.5V (a cell voltage of only about 2V). The dRAM contains 40k bits,
which provides 2k raw vectors per pin. The nmpression algorithm we use usually compacts the
vector stream by a factor of between 3-5, which means the chip can effectively store between
6-1 Ok vectors per pin.

The decompressed test vectors are sent to the pin electronics section of the chip. This is a
slightly updated version of the circuitry that we have described earlier [Gasbarro 88, Gasbarro
89]. The pin electronics allow the user to select between 5 output formats (NRZ RZ RO
RTristate RComplement) and can adjust the edge placement of the output transitions to better
than lns. The input sampling time is adjustable as well. The output driver can select between
two output high levels and two output low levels to allow some pins to be tested for TTL
compatability while others are driven to CMOS levels.

In addition to working on the chip, we have developed a set of software routine to make using
the chip easier. These routines allow the user to easily set up and calibrate the pin electronics,
and to down-load test vectors into the part. We are now working on building a proto-type 256
pin tester using 16 of these parts. This tester should run at 25MHz, and have a timing accuracy
of about lns.

5.3 Programmable Gate Arrays
The Programmable Gate Array (PGA) is an exciting new idea in integrated circuits that reduces
the IC manufacturing time from months to minutes and prototype cost from tens of thousands of
dollars to under $100. A PGA is similar to a gate array in structure and purpose, but can be
field-programmed tc specify the function of its logic blocks and their interconnection. It was
pioneered by the Xilinx Company of San Jose, California in 1986 [Carter 86] and new versions
have recently been presented by that company and Actel Co. of Sunnyvale, CA [Hsieh 87, Hsieh
88, E1-Ayat 88, El Gamal 88]. While PGAs are potentially a multi-billion dollar market and
perhaps a boon to high-technology entrepreneurs, they also represent an entirely new area for
scientific research. Indeed, the companies that have been rushing products to market have not
had the time to carefully consider all of the tradeoffs involved in the design of PGAs [Carter 89].

Our initial work focuses on the design of the logic block, and was restricted to logic blocks using
truth-table lookup for logic functions. It investigates the tradeoff between the functionality of
the logic block (the number of inputs to the truth table), and the area required for the resulting
programmable gate array. A set of industrial circuits were implemented as PGAs using tools that
were developed for technology mapping, placement and routing. The implementations were
done for a variety of logic blocks (different numbers of inputs) in several different programming
technologies. The programming technology is the underlying method by which the truth table is
filled and the interconnection is configured. The two commercial programming technologies are
1) static RAM and pass transistors [Hsieh 88] and 2) the anti-fuse [El Gamal 88].

While increasing the logic block functionality reduces the total number of logic blocks required
for a circuit, it increases the area of the logic block itself and the interconnection requirements -
the amount of area used for the programmable wires - because more interconnection is required
in a smaller area. This latter factor results in the choice of a (truth table-based) logic block that
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has number of inputs of only 3 or 4. We were also able to show, for the industrial circuits we
used, that it is always beneficial to include a D flip-flop in the logic block. Both of these results
were shown to be independent of the programming technology. This work will appear in [Rose
89c].

Work is progressing on CAD tools for technology mapping and routing of PGAs. These present
new and difficult problems due to the large number of functions each logic block can perform,
and the restricted routing paths inherent in any practical programmable interconnect scheme.
The tools will be used to investigate other classes of logic block designs and new interconnection
structures so as to design efficient architectures for PGAs.
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